Non-linear Matrix Factorization for Group Recommendation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Augmented Maximum Margin Matrix Factorization for Flickr Group Recommendation

User groups on photo sharing websites, such as Flickr, are self-organized communities to share photos and conversations with similar interest and have gained massive popularity. However, the huge volume of groups brings troubles for users to decide which group to choose. Further, directly applying collaborative filtering techniques to group recommendation will suffer from cold start problem sin...

متن کامل

Matrix Factorization+ for Movie Recommendation

We present a novel model for movie recommendations using additional visual features extracted from pictural data like posters and still frames, to better understand movies. In particular, several context-based methods for recommendation are shown to be special cases of our proposed framework. Unlike existing context-based approaches, our method can be used to incorporate visual features – featu...

متن کامل

Group Sparse Non-negative Matrix Factorization for Multi-Manifold Learning

Many observable data sets such as images, videos and speech can be modeled by a mixture of manifolds which are the result of multiple factors (latent variables). In this paper, we propose a novel algorithm to learn multiple linear manifolds for face recognition, called Group Sparse Non-negative Matrix Factorization (GSNMF). Via the group sparsity constraint imposed on the column vectors of the ...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Twitter Hashtag Recommendation using Matrix Factorization

Twitter, one of the biggest and most popular microblogging Websites, has evolved into a powerful communication platform which allows millions of active users to generate huge volume of microposts and queries on a daily basis. To accommodate effective categorization and easy search, users are allowed to make use of hashtags, keywords or phrases prefixed by hash character, to categorize and summa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Japanese Society for Artificial Intelligence

سال: 2015

ISSN: 1346-0714,1346-8030

DOI: 10.1527/tjsai.30.485